Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 10.668
1.
Malar J ; 23(1): 138, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720269

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Artemisinins/pharmacology , Artemisinins/therapeutic use , Myanmar , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Cross-Sectional Studies , Female , Male , Adolescent , Adult , Mass Drug Administration , Young Adult , Mutation , Child , Child, Preschool , Middle Aged , Quinolines/pharmacology , Quinolines/therapeutic use , Disease Eradication/statistics & numerical data , Piperazines
2.
BMC Res Notes ; 17(1): 129, 2024 May 09.
Article En | MEDLINE | ID: mdl-38725016

OBJECTIVES: The study evaluated sub-microscopic malaria infections in pregnancy using two malaria Rapid Diagnostic Tests (mRDTs), microscopy and RT-PCR and characterized Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and Plasmodium falciparum dihydropteroate synthase (Pfdhps) drug resistant markers in positive samples. METHODS: This was a cross sectional survey of 121 pregnant women. Participants were finger pricked, blood drops were collected for rapid diagnosis with P. falciparum histidine-rich protein 11 rapid diagnostic test kit and the ultra-sensitive Alere Pf malaria RDT, Blood smears for microscopy and dried blood spots on Whatman filter paper for molecular analysis were made. Real time PCR targeting the var acidic terminal sequence (varATS) gene of P. falciparum was carried out on a CFX 96 real time system thermocycler (BioRad) in discriminating malaria infections. For each run, laboratory strain of P. falciparum 3D7 and nuclease free water were used as positive and negative controls respectively. Additionally, High resolution melt analyses was employed for genotyping of the different drug resistance markers. RESULTS: Out of one hundred and twenty-one pregnant women sampled, the SD Bioline™ Malaria Ag P.f HRP2-based malaria rapid diagnostic test (mRDT) detected eight (0.06%) cases, the ultra-sensitive Alere™ malaria Ag P.f rapid diagnostic test mRDT had similar outcome in the same samples as detected by the HRP2-based mRDT. Microscopy and RT-PCR confirmed four out of the eight infections detected by both rapid diagnostic tests as true positive and RT-PCR further detected three false negative samples by the two mRDTs providing a sub-microscopic malaria prevalence of 3.3%. Single nucleotide polymorphism in Pfdhps gene associated with sulphadoxine resistance revealed the presence of S613 mutant genotypes in three of the seven positive isolates and isolates with mixed wild/mutant genotype at codon A613S. Furthermore, four mixed genotypes at the A581G codon were also recorded while the other Pfdhps codons (A436G, A437G and K540E) showed the presence of wild type alleles. In the Pfdhfr gene, there were mutations in 28.6%, 28.6%, and 85.7% at the I51, R59 and N108 codons respectively. Mixed wild and mutant type genotypes were also observed in 28.6% each of the N51I, and C59R codons. For the Pfcrt, two haplotypes CVMNK and CVIET were observed. The SVMNT was altogether absent. Triple mutant CVIET 1(14.3%) and triple mutant + wild genotype CVIET + CVMNK 1(14.3%) were observed. The Pfmdr1 haplotypes were single mutants YYND 1(14.3%); NFND 1(14.3%) and double mutants YFND 4(57.1%); YYDD 1(14.3%).


Malaria, Falciparum , Plasmodium falciparum , Polymorphism, Single Nucleotide , Female , Humans , Malaria, Falciparum/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Pregnancy , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Adult , Cross-Sectional Studies , Polymorphism, Single Nucleotide/genetics , Nigeria/epidemiology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Alleles , Young Adult , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/genetics , Pregnancy Complications, Parasitic/diagnosis , Drug Resistance, Multiple/genetics , Dihydropteroate Synthase/genetics , Tetrahydrofolate Dehydrogenase/genetics , Protozoan Proteins/genetics , Adolescent
3.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731970

Malaria is a severe disease that presents a significant threat to human health. As resistance to current drugs continues to increase, there is an urgent need for new antimalarial medications. Aminoacyl-tRNA synthetases (aaRSs) represent promising targets for drug development. In this study, we identified Plasmodium falciparum tyrosyl-tRNA synthetase (PfTyrRS) as a potential target for antimalarial drug development through a comparative analysis of the amino acid sequences and three-dimensional structures of human and plasmodium TyrRS, with particular emphasis on differences in key amino acids at the aminoacylation site. A total of 2141 bioactive compounds were screened using a high-throughput thermal shift assay (TSA). Okanin, known as an inhibitor of LPS-induced TLR4 expression, exhibited potent inhibitory activity against PfTyrRS, while showing limited inhibition of human TyrRS. Furthermore, bio-layer interferometry (BLI) confirmed the high affinity of okanin for PfTyrRS. Molecular dynamics (MD) simulations highlighted the stable conformation of okanin within PfTyrRS and its sustained binding to the enzyme. A molecular docking analysis revealed that okanin binds to both the tyrosine and partial ATP binding sites of the enzyme, preventing substrate binding. In addition, the compound inhibited the production of Plasmodium falciparum in the blood stage and had little cytotoxicity. Thus, okanin is a promising lead compound for the treatment of malaria caused by P. falciparum.


Antimalarials , Molecular Docking Simulation , Molecular Dynamics Simulation , Plasmodium falciparum , Tyrosine-tRNA Ligase , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Tyrosine-tRNA Ligase/antagonists & inhibitors , Tyrosine-tRNA Ligase/metabolism , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Binding Sites , Protein Binding , Animals , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology
4.
Nat Commun ; 15(1): 3817, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714692

Standard diagnostics used in longitudinal antimalarial studies are unable to characterize the complexity of submicroscopic parasite dynamics, particularly in high transmission settings. We use molecular markers and amplicon sequencing to characterize post-treatment stage-specific malaria parasite dynamics during a 42 day randomized trial of 3- versus 5 day artemether-lumefantrine in 303 children with and without HIV (ClinicalTrials.gov number NCT03453840). The prevalence of parasite-derived 18S rRNA is >70% in children throughout follow-up, and the ring-stage marker SBP1 is detectable in over 15% of children on day 14 despite effective treatment. We find that the extended regimen significantly lowers the risk of recurrent ring-stage parasitemia compared to the standard 3 day regimen, and that higher day 7 lumefantrine concentrations decrease the probability of ring-stage parasites in the early post-treatment period. Longitudinal amplicon sequencing reveals remarkably dynamic patterns of multiclonal infections that include new and persistent clones in both the early post-treatment and later time periods. Our data indicate that post-treatment parasite dynamics are highly complex despite efficacious therapy, findings that will inform strategies to optimize regimens in the face of emerging partial artemisinin resistance in Africa.


Antimalarials , Artemether, Lumefantrine Drug Combination , Plasmodium falciparum , Humans , Artemether, Lumefantrine Drug Combination/therapeutic use , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Child, Preschool , Child , Male , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Female , Parasitemia/drug therapy , Parasitemia/parasitology , RNA, Ribosomal, 18S/genetics , Malaria/drug therapy , Malaria/parasitology , Infant , HIV Infections/drug therapy , Artemisinins/therapeutic use , Artemisinins/administration & dosage
5.
Front Cell Infect Microbiol ; 14: 1396786, 2024.
Article En | MEDLINE | ID: mdl-38746786

Antimalarial resistance to the first-line partner drug piperaquine (PPQ) threatens the effectiveness of artemisinin-based combination therapy. In vitro piperaquine resistance is characterized by incomplete growth inhibition, i.e. increased parasite growth at higher drug concentrations. However, the 50% inhibitory concentrations (IC50) remain relatively stable across parasite lines. Measuring parasite viability of a drug-resistant Cambodian Plasmodium falciparum isolate in a parasite reduction ratio (PRR) assay helped to better understand the resistance phenotype towards PPQ. In this parasite isolate, incomplete growth inhibition translated to only a 2.5-fold increase in IC50 but a dramatic decrease of parasite killing in the PRR assay. Hence, this pilot study reveals the potential of in vitro parasite viability assays as an important, additional tool when it comes to guiding decision-making in preclinical drug development and post approval. To the best of our knowledge, this is the first time that a compound was tested against a drug-resistant parasite in the in vitro PRR assay.


Antimalarials , Drug Resistance , Inhibitory Concentration 50 , Malaria, Falciparum , Plasmodium falciparum , Quinolines , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Quinolines/pharmacology , Antimalarials/pharmacology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Parasitic Sensitivity Tests , Pilot Projects , Artemisinins/pharmacology
6.
Sci Rep ; 14(1): 10942, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740839

Pradimicin U is a new dihydrobenzo[a]naphthacenequinone compound found to be active on a screen designed to investigate compounds with antimicrobial activity, produced by the actinomycete designated strain FMUSA5-5T. The strain was isolated from a bio-fertilizer of Musa spp. collected from Suphanburi province, Thailand. The chemotaxonomic characteristics and 16S rRNA gene analysis revealed that strain FMUSA5-5T is a member of the genus Nonomuraea. Low genome-based taxonomic criteria, average nucleotide identity (ANI) (82.8-88.3%), average amino-acid identity (AAI) (79.4-87.3%), and digital DNA-DNA hybridization (dDDH) (29.5-38.5%) values and several phenotypic differences between strain FMUSA5-5T and its closest type strains of the genus Nonomuraea indicated that strain FMUSA5-5T represents a novel species of the genus Nonomuraea and the name Nonomuraea composti sp. nov. is proposed for the strain. The crude extract from the culture broth of strain FMUSA5-5T displayed promising antimicrobial activity against several pathogens and led to the isolation of a novel secondary metabolite, pradimicin U. Interestingly, this compound displayed a broad spectrum of biological activities such as antimalarial activity against Plasmodium falciparum K1 (IC50 value = 3.65 µg/mL), anti-Mycobacterium tuberculosis H37Ra (MIC value = 25.0 µg/mL), anti-Alternaria brassicicola BCC 42724 (MIC value = 25.0 µg/mL), anti-Bacillus cereus ATCC 11778 and anti-Staphylococcus aureus ATCC 29213 (MIC values = 6.25 and 1.56 µg/mL, respectively). Moreover, the compound possessed strong anti-human small cell lung cancer (NCI-H187) activity with IC50 value of 5.69 µg/mL, while cytotoxicity against human breast cancer (MCF-7) and Vero cells was very weak (IC50 values of 52.49 and 21.84 µg/mL, respectively).


Anti-Infective Agents , RNA, Ribosomal, 16S , Humans , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , RNA, Ribosomal, 16S/genetics , Microbial Sensitivity Tests , Phylogeny , Actinomycetales/genetics , Actinomycetales/isolation & purification , Animals , Thailand , Vero Cells , Musa/microbiology , Plasmodium falciparum/drug effects , Chlorocebus aethiops
7.
Malar J ; 23(1): 144, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741101

BACKGROUND: Monitoring therapeutic efficacy is important to ensure the efficacy of artemisinin-based combination therapy (ACT) for malaria. The current first-line treatment for uncomplicated malaria recommended by the National Malaria Control Program in Niger is artemether-lumefantrine (AL). In 2020, an in vivo study was carried out to evaluate clinical and parasitological responses to AL as well as the molecular resistance to the drug in three sentinel sites: Agadez, Tessaoua and Gaya, in Niger. METHODS: A multi-center, single-arm trial was conducted according to the 28-day World Health Organization (WHO) 2009 therapeutic efficacy study protocol. Children between 6 months and 15 years with confirmed uncomplicated Plasmodium falciparum infection and 1000-200,000 asexual parasites/µL of blood were enrolled and followed up for 28 days. Uncorrected and PCR-corrected efficacy results at day 28 were calculated, and molecular correction was performed by genotyping the msp1, msp2, and glurp genes. The pfk13, pfdhfr, pfdhps, pfcrt and pfmdr genes were analyzed by PCR and Sanger sequencing. The Kaplan-Meier curve assessed parasite clearance. RESULTS: A total of 255 patients were enrolled in the study. The adequate clinical and parasitological response after PCR correction was 98.9% (95% CI 96.4-101.0%), 92.2% (85.0-98.5%) and 97.1% (93.1-101.0%) in Gaya, Tessaoua and Agadez, respectively. No adverse events were observed. Ten mutations (SNP) were found, including 7 synonyms (K248K, G690G, E691E, E612E, C469C, G496G, P718P) and 3 non-synonyms (N594K, R255K, V714S). Two mutations emerged: N594K and V714S. The R255K mutation detected in Southeast Asia was also detected. The pfdhpsK540E and pfdhfrI164L mutations associated with high levels of resistance are absent. There is a reversal of chloroquine resistance. CONCLUSION: The study findings indicate that AL is effective and well tolerated for the treatment of uncomplicated malaria in three sites in Niger. The emergence of a pfk13 mutation requires additional testing such as the Ring Stage Assay and CRISPR/Cas9 to confirm the role of these emerging mutations. Trial registration NCT05070520, October 7, 2021.


Antimalarials , Artemether, Lumefantrine Drug Combination , Malaria, Falciparum , Plasmodium falciparum , Artemether, Lumefantrine Drug Combination/therapeutic use , Malaria, Falciparum/drug therapy , Antimalarials/therapeutic use , Antimalarials/adverse effects , Child, Preschool , Humans , Niger , Child , Infant , Adolescent , Male , Female , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Drug Resistance/genetics
8.
Front Cell Infect Microbiol ; 14: 1366563, 2024.
Article En | MEDLINE | ID: mdl-38716192

Background: Routine surveillance for antimalarial drug resistance is critical to sustaining the efficacy of artemisinin-based Combination Therapies (ACTs). Plasmodium falciparum kelch-13 (Pfkelch-13) and non-Pfkelch-13 artemisinin (ART) resistance-associated mutations are uncommon in Africa. We investigated polymorphisms in Plasmodium falciparum actin-binding protein (Pfcoronin) associated with in vivo reduced sensitivity to ART in Nigeria. Methods: Fifty-two P. falciparum malaria subjects who met the inclusion criteria were followed up in a 28-day therapeutic efficacy study of artemether-lumefantrine in Lagos, Nigeria. Parasite detection was done by microscopy and molecular diagnostic approaches involving PCR amplification of genes for Pf18S rRNA, varATS, telomere-associated repetitive elements-2 (TARE-2). Pfcoronin and Pfkelch-13 genes were sequenced bi-directionally while clonality of infections was determined using 12 neutral P. falciparum microsatellite loci and msp2 analyses. Antimalarial drugs (sulfadoxine-pyrimethamine, amodiaquine, chloroquine and some quinolones) resistance variants (DHFR_51, DHFR_59, DHFR_108, DHFR_164, MDR1_86, MDR1_184, DHPS_581 and DHPS_613) were genotyped by high-resolution melting (HRM) analysis. Results: A total of 7 (26.92%) cases were identified either as early treatment failure, late parasitological failure or late clinical failure. Of the four post-treatment infections identified as recrudescence by msp2 genotypes, only one was classified as recrudescence by multilocus microsatellites genotyping. Microsatellite analysis revealed no significant difference in the mean allelic diversity, He, (P = 0.19, Mann-Whitney test). Allele sizes and frequency per locus implicated one isolate. Genetic analysis of this isolate identified two new Pfcoronin SNVs (I68G and L173F) in addition to the P76S earlier reported. Linkage-Disequilibrium as a standardized association index, IAS, between multiple P. falciparum loci revealed significant LD (IAS = 0.2865, P=0.02, Monte-Carlo simulation) around the neutral microsatellite loci. The pfdhfr/pfdhps/pfmdr1 drug resistance-associated haplotypes combinations, (108T/N/51I/164L/59R/581G/86Y/184F), were observed in two samples. Conclusion: Pfcoronin mutations identified in this study, with potential to impact parasite clearance, may guide investigations on emerging ART tolerance in Nigeria, and West African endemic countries.


Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Antimalarials/pharmacology , Antimalarials/therapeutic use , Nigeria , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Drug Resistance/genetics , Artemisinins/pharmacology , Artemisinins/therapeutic use , Mutation , Protozoan Proteins/genetics , Artemether, Lumefantrine Drug Combination/therapeutic use , Male , Microfilament Proteins/genetics , Female , Drug Combinations , Microsatellite Repeats/genetics , Genotype , Sequence Analysis, DNA , Recurrence , Polymorphism, Genetic , Adult
9.
Artif Cells Nanomed Biotechnol ; 52(1): 238-249, 2024 Dec.
Article En | MEDLINE | ID: mdl-38696111

Malaria is a mosquito-borne infectious disease that is caused by the Plasmodium parasite. Most of the available medication are losing their efficacy. Therefore, it is crucial to create fresh leads to combat malaria. Green silver nanoparticles (AgNPs) have recently attracted a lot of attention in biomedical research. As a result, green mediated AgNPs from leaves of Terminalia bellirica, a medicinal plant with purported antimalarial effects, were used in this investigation. Initially, cysteine-rich proteins from Plasmodium species were studied in silico as potential therapeutic targets. With docking scores between -9.93 and -11.25 kcal/mol, four leaf constituents of Terminalia bellirica were identified. The green mediated silver nanoparticles were afterward produced using leaf extract and were further examined using UV-vis spectrophotometer, DLS, Zeta potential, FTIR, XRD, and FESEM. The size of synthesized TBL-AgNPs was validated by the FESEM results; the average size of TBL-AgNPs was around 44.05 nm. The zeta potential study also supported green mediated AgNPs stability. Additionally, Plasmodium falciparum (3D7) cultures were used to assess the antimalarial efficacy, and green mediated AgNPs could effectively inhibit the parasitized red blood cells (pRBCs). In conclusion, this novel class of AgNPs may be used as a potential therapeutic replacement for the treatment of malaria.


Antimalarials , Green Chemistry Technology , Metal Nanoparticles , Plant Extracts , Plant Leaves , Plasmodium falciparum , Silver , Terminalia , Silver/chemistry , Silver/pharmacology , Antimalarials/chemistry , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Metal Nanoparticles/chemistry , Terminalia/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plasmodium falciparum/drug effects , Molecular Docking Simulation , Humans
10.
Malar J ; 23(1): 141, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734650

BACKGROUND: The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria. METHODS: Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay. RESULTS: The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function. CONCLUSION: This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.


Antimalarials , Phytochemicals , Plant Extracts , Plasmodium falciparum , Ziziphus , Antimalarials/pharmacology , Antimalarials/chemistry , Ziziphus/chemistry , Plasmodium falciparum/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Drug Discovery
11.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739798

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Peptides , Plasmodium falciparum , Protozoan Proteins , Ubiquitin Thiolesterase , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Antimalarials/pharmacology , Antimalarials/chemistry , Ubiquitin/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
12.
Parasitol Res ; 123(5): 209, 2024 May 14.
Article En | MEDLINE | ID: mdl-38740597

Artemisinin (ART) combination therapy is the main treatment for malaria. Pfk13 mutations (or K13 mutations, Kelch 13) are associated with ART resistance. This study aims to conduct a systematic review and meta-analysis of the prevalence of K13 mutations with ART resistance in malaria-endemic countries. An electronic search of studies in 2018 and a manual search in 2020 were performed to identify relevant studies. The risk of bias was assessed using the National Institutes of Health (NIH) quality assessment tool for observational cohort and cross-sectional studies. Data analysis was performed using R 4.1.0. Heterogeneity was estimated using the statistic I2 and Cochran Q test. A total of 170 studies were included in our review. Of these, 55 studies investigated the prevalence of K13 mutations in Southeast Asia. The meta-analysis showed that Southeast Asia had the highest prevalence of K13 mutations, whereas Africa, South America, Oceania, and other Asian countries outside Southeast Asia had a low prevalence of K13 mutations. The C580Y mutation was the most common in Southeast Asia with 35.5% (95%CI: 25.4-46.4%), whereas the dominant mutation in Africa was K189T (22.8%, 95%CI: 7.6-43.2%). This study revealed the emergence of ART resistance associated with K13 mutations in Southeast Asia. The diversity of each type of K13 mutation in other regions was also reported.


Antimalarials , Artemisinins , Polymorphism, Genetic , Artemisinins/therapeutic use , Humans , Antimalarials/therapeutic use , Prevalence , Drug Resistance/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Malaria/drug therapy , Malaria/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Mutation , Protozoan Proteins/genetics , Asia, Southeastern/epidemiology
13.
Eur J Med Chem ; 271: 116429, 2024 May 05.
Article En | MEDLINE | ID: mdl-38663284

Amodiaquine (AQ) is a potent antimalarial drug used in combination with artesunate as part of artemisinin-based combination therapies (ACTs) for malarial treatment. Due to the rising emergence of resistant malaria parasites, some of which have been reported for ACT, the usefulness of AQ as an efficacious therapeutic drug is threatened. Employing the organometallic hybridisation approach, which has been shown to restore the antimalarial activity of chloroquine in the form of an organometallic hybrid clinical candidate ferroquine (FQ), the present study utilises this strategy to modulate the biological performance of AQ by incorporating ferrocene. Presently, we have conceptualised ferrocenyl AQ derivatives and have developed facile, practical routes for their synthesis. A tailored library of AQ derivatives was assembled and their antimalarial activity evaluated against chemosensitive (NF54) and multidrug-resistant (K1) strains of the malaria parasite, Plasmodium falciparum. The compounds generally showed enhanced or comparable activities to those of the reference clinical drugs chloroquine and AQ, against both strains, with higher selectivity for the sensitive phenotype, mostly in the double-digit nanomolar IC50 range. Moreover, representative compounds from this series show the potential to block malaria transmission by inhibiting the growth of stage II/III and V gametocytes in vitro. Preliminary mechanistic insights also revealed hemozoin inhibition as a potential mode of action.


Amodiaquine , Antimalarials , Ferrous Compounds , Metallocenes , Plasmodium falciparum , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacology , Plasmodium falciparum/drug effects , Metallocenes/chemistry , Metallocenes/pharmacology , Amodiaquine/pharmacology , Amodiaquine/chemistry , Structure-Activity Relationship , Molecular Structure , Humans , Parasitic Sensitivity Tests , Dose-Response Relationship, Drug
14.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673995

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Cysteine Proteinase Inhibitors , Nitriles , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Malaria/drug therapy , Nitriles/therapeutic use , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy
15.
mSphere ; 9(4): e0000724, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38567972

Bruno Martorelli Di Genova works in parasitology, focusing on Toxoplasma gondii metabolism. In this mSphere of Influence article, he reflects on how the articles "Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani" and "Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites" impacted him, informing his research strategies and understanding of metabolic flexibility in Toxoplasma gondii.


Leishmania donovani , Plasmodium falciparum , Purines , Toxoplasma , Purines/metabolism , Toxoplasma/metabolism , Leishmania donovani/metabolism , Leishmania donovani/drug effects , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Humans
16.
mSphere ; 9(4): e0014024, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38564734

Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.


DNA Repair , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , DNA Replication , Histones/genetics , Histones/metabolism , Gene Expression Regulation
17.
PLoS Comput Biol ; 20(4): e1012017, 2024 Apr.
Article En | MEDLINE | ID: mdl-38626207

Current malaria elimination targets must withstand a colossal challenge-resistance to the current gold standard antimalarial drug, namely artemisinin derivatives. If artemisinin resistance significantly expands to Africa or India, cases and malaria-related deaths are set to increase substantially. Spatial information on the changing levels of artemisinin resistance in Southeast Asia is therefore critical for health organisations to prioritise malaria control measures, but available data on artemisinin resistance are sparse. We use a comprehensive database from the WorldWide Antimalarial Resistance Network on the prevalence of non-synonymous mutations in the Kelch 13 (K13) gene, which are known to be associated with artemisinin resistance, and a Bayesian geostatistical model to produce spatio-temporal predictions of artemisinin resistance. Our maps of estimated prevalence show an expansion of the K13 mutation across the Greater Mekong Subregion from 2000 to 2022. Moreover, the period between 2010 and 2015 demonstrated the most spatial change across the region. Our model and maps provide important insights into the spatial and temporal trends of artemisinin resistance in a way that is not possible using data alone, thereby enabling improved spatial decision support systems on an unprecedented fine-scale spatial resolution. By predicting for the first time spatio-temporal patterns and extents of artemisinin resistance at the subcontinent level, this study provides critical information for supporting malaria elimination goals in Southeast Asia.


Antimalarials , Artemisinins , Bayes Theorem , Drug Resistance , Artemisinins/pharmacology , Asia, Southeastern/epidemiology , Drug Resistance/genetics , Antimalarials/pharmacology , Humans , Spatio-Temporal Analysis , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Mutation , Malaria/drug therapy , Malaria/epidemiology , Computational Biology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/epidemiology
18.
Molecules ; 29(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38675640

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Chalcones , Plasmodium falciparum , Chalcones/pharmacology , Chalcones/chemistry , Chalcones/chemical synthesis , Humans , Cell Line, Tumor , Plasmodium falciparum/drug effects , Leishmania donovani/drug effects , Leishmania donovani/growth & development , Antimalarials/pharmacology , Antimalarials/chemical synthesis , Antimalarials/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Molecular Structure
19.
J Vector Borne Dis ; 61(1): 81-89, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38648409

BACKGROUND OBJECTIVES: Malaria due to Plasmodium falciparum (Pf) remains a major public threat in India. Artemisinin-based combination therapy (ACT) has been the country's first-line drug for uncomplicated Pf malaria. In 2013-2014, Artesunate plus sulfadoxine (AS+SP) was replaced by Artemether Lumefantrine (AL) as the first- line antimalarial in North East (NE) states of the country which are endemic for Pf malaria. Regular monitoring of antimalarial drugs is of utmost importance to achieve the goal of elimination. This study aimed to assess the efficacy and safety of ACT for treating uncomplicated Pf malaria in the NE states of India. METHODS: A prospective study of 28-day follow-up was conducted to monitor the efficacy and safety of AL from 2018-2019 in four districts, Udalgiri, Meghalaya, Lawngtlai, and Dhalai of NE, India. The clinical and parasitological response and the polymorphism analysis of the Pfdhps, P/dhfr, and Pfkelch 13 gene were evaluated. RESULTS: A total of 234 patients were enrolled in the study out of 216 patients who completed the follow-up to 28 days. One-hundred percent adequate clinical and parasitological responses (ACPR) were observed with polymerase chain reaction (PCR) correction. The genotype results suggest no recrudescence in the treatment-failure patients. The classical single nucleotide polymorphisms (SNP) in the Pfdhfr gene was S108N (94.9%), followed by C59R (91.5%), whereas, in the Pfdhps gene, the common SNP was A437G (79.6%), followed by S3436A. No associated or validated mutations were found in the propeller region of the PfKelch13 gene. INTERPRETATION CONCLUSION: AL was efficacious and safe in uncomplicated P. falciparum malaria in North East India. In contrast, mutations in the genes responsible for sulfadoxine and pyrimethamine resistance have been fixed in northeast India's population.


Antimalarials , Artemisinins , Drug Therapy, Combination , Malaria, Falciparum , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , India , Humans , Artemisinins/therapeutic use , Artemisinins/adverse effects , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Antimalarials/adverse effects , Female , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Prospective Studies , Adult , Young Adult , Adolescent , Middle Aged , Treatment Outcome , Child , Child, Preschool , Artemether, Lumefantrine Drug Combination/therapeutic use , Sulfadoxine/therapeutic use , Drug Combinations
20.
ACS Infect Dis ; 10(5): 1739-1752, 2024 May 10.
Article En | MEDLINE | ID: mdl-38647213

Reverse analogs of the phosphonohydroxamic acid antibiotic fosmidomycin are potent inhibitors of the nonmevalonate isoprenoid biosynthesis enzyme 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR, IspC) of Plasmodium falciparum. Some novel analogs with large phenylalkyl substituents at the hydroxamic acid nitrogen exhibit nanomolar PfDXR inhibition and potent in vitro growth inhibition of P. falciparum parasites coupled with good parasite selectivity. X-ray crystallographic studies demonstrated that the N-phenylpropyl substituent of the newly developed lead compound 13e is accommodated in a subpocket within the DXR catalytic domain but does not reach the NADPH binding pocket of the N-terminal domain. As shown for reverse carba and thia analogs, PfDXR selectively binds the S-enantiomer of the new lead compound. In addition, some representatives of the novel inhibitor subclass are nanomolar Escherichia coli DXR inhibitors, whereas the inhibition of Mycobacterium tuberculosis DXR is considerably weaker.


Aldose-Ketose Isomerases , Antimalarials , Fosfomycin , Hydroxamic Acids , Multienzyme Complexes , Plasmodium falciparum , Fosfomycin/pharmacology , Fosfomycin/analogs & derivatives , Fosfomycin/chemistry , Aldose-Ketose Isomerases/antagonists & inhibitors , Aldose-Ketose Isomerases/metabolism , Aldose-Ketose Isomerases/chemistry , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Antimalarials/pharmacology , Antimalarials/chemistry , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/metabolism , Multienzyme Complexes/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/enzymology , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Catalytic Domain , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism
...